SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Title:	HYDROLOGY
Code No.:	HYD 110-5
Program:	WATER RESOURCES ENGINEERING TECHNOLOGY
Semester:	IV
Date:	APRIL 1988
Author:	SUBHASH C. VERMA

New:

Revision:

APPROVED:

Chairperson

Date (\py'<u>J(ih/fa</u>

Wi APR 21 1988

SAULT CUTLTGT LIDKARY SAULT STE MARIE

HYDROLOGY

HYD 110-5

Course Name

Course Number

PREREQUISITE; GEO 119-5 FIELD ORIENTATION

PHILOSOPHY/GOALS;

Recognize and identify the processes in the hydrologic cycle which are important for a variety of watersheds and watershed conditions. Measurement and instruments required for common hydrological data both from quantity as well as quality point of view. Basic calculation/computation techniques, including simple deterministic modelling and stochastic analysis for the solution of common hydrological problems.

On the completion of the course, the student should be able to:

- Do measurement and estimation of hydrologic components including precipitation, evaporation, transpiration and infiltration.
- Do the volume balance for simplified hydrologic systems.
- Measure the quantities like stream flow velocity, elevation, precipitation and water levels and operation related hydrological equipment. Maintain a field book, interpret and analyze the data.
- Make indirect measurements and computations of stream flow.
- Apply the principles of statistics to the historical data to make forecasts about events including floods and droughts.
- Determine the impact of various flood control methods.
- Apply principles of hydrology to the prediction of precipitation and the calculation of peak runoff both for urban and rural watersheds using rational method and Soil Cover Complex method.
- Develop unit hydrographs for small watersheds using the observed stream flow data or based on other watershed characteristics.
- Develop synthetic flow hydrographs based on storm and watershed properties.
- Apply the principles of hydraulics and hydrology in routing the flood wave and understanding of flood control measures.
- Determine reservoir capacity based on the hydrologic data and role of reservoirs as flood control structures.

-3-HYD 110-5

METHOD OF ASSESSMENT AND EVALUATION;

The final mark will be assigned which is higher of either a) final examination b) weighted mark calculated as follows: Laboratory Exercises & Assignment Problems 25% Midterm Examination 25% Final Examination 50%

GRADING: A + = 90-100% A = 80-89% B = 70-79% C = 60-69%

- Eighty percent attendance is required for anyone to be considered for supplementary examination.
- Homework assigned is due after one week. Late submissions will be penalized.
- To pass the course, a student must secure at least 60% in one of the tests.
- This is subject to any changes.

TEXTBOOK(S):

Hammer, Mark J. and K.A. Mackichan (1981). <u>Hydrology and Quality of Water</u> Resources, John Wiley and Sons, Inc., Toronto.

REFERENCES:

Viessman, Warren Jr., J.W. Knapp and G.L. Lewis (1977). <u>Introduction</u> to Hydrology, 2nd Edition, Harper and Row Publishers, New York.

Linsley, R.K. Jr., M.A. Kohler and J.L.H. Paulhus (1982). <u>Hydrology for</u> Engineers, 3rd Edition, McGraw-Hill Book Company, Toronto.

Gray, D.M. (Editor-in-Chief) (1970). <u>Handbook</u> on <u>the Principles of</u> Hydrology, **Water** Information Center, Inc., HuntIngton, New York.

Hewlet, John D. (1982). <u>Principles</u> of <u>Forest Hydrology</u>, The University of Georgia Press. Athens.

Chow, V.T. (Editor in Chief)(1964). <u>Handbook of Applied Hydrology</u>, McGraw-Hill Book Company, Toronto, Ontario. -4-HYD 110-5

١

		NO.	OF WEEK
1.	Introduction:		(2)
	 hydrologic cycle water quantity water quality continuity equation horologic budget equation 		
2.	Precipitation		(2)
	 measurement of rain and snow analytical methods for computing averages areal variation time variability of precipitation at a point maximum mean rain depth area curve rainfall intensity duration frequency curve 		
3.	Hydrologic Abstractions		(2)
	 evaporation transpiration, evapotranspiration interception, depression storage infiltration estimation and measurement 		
4.	Stochastic Hydrology		(2)
5.	 probability approach to the analysis of hydrologic problem probability distribution of hydrologic data flood frequency analysis risk analysis <u>Stream Flow</u> 	3	(2)
	- stream ganging stations		
	 measuring stream flow by current metering determining stream flow by indirect methods stream flow records 		
6.	Rainfall-Runoff Relationships		(4)
	- factors affecting runoff - components of a hydrograph - hydrograph analysis		
7.	Peak Runoff Rates		(1)
	- importance - empirical formula - rational formula - Soil Cover Complex Method		

- 5 -HYD 110-5

8.	Unit Hydrograph	(2)
	 concept dirivation of UH application of UH synthetic hydrograph 	
9.	Flood Routing	(1)
	 importance continuity equation flood routing procedures 	
10.	Hydrology of Impounded Water	(1)
	- construction of reservoirs - reservoir yield - thermal stratification	
11.	Water Resources Management	(1)
	- water quality management - water quantity management	
	A laboratory exercise is developed for each topic. This	

allows the student to get practice in solving practical problems in the field of hydrology.